Summary

An unusual structural feature of human immunoglobulin A (IgA) is the heterogeneity of the molecular forms, with a characteristic distribution in various body fluids. Serum IgA is largely monomeric, but in external secretions it exists as S-IgA - a dimer consisting of two IgA molecules bound together by J chain and attached to secretory piece (SC). Both in serum and secretions IgA occurs in two isotypic forms, IgA1 and IgA2. IgA2 exists as two known allotypes, namely $IgA_2m(1)$ and $IgA_2m(2)$, with a form $IgA_2(n)$ possibly representing a third allotype. The major difference between the IgA subclasses is an absence of 13-amino acid segment in the hinge region of IgA2 that is found in IgA₁ molecules. This truncated hinge region in IgA₂ molecules renders them resistant to at least two families of IgA1-specific bacterial proteases, which presumably is advantageous to IgA₂ antibody function at mucosal surfaces. Further and profound structural difference between the $\alpha 1$ and $\alpha 2$ chains concerns the distribution and composition of the oligosaccharide side chains. The IgA₁ contains two *N*-linked glycosylation sites (Asn²⁶³ in the CH₂ domain and Asn⁴⁵⁹ in the tail piece) as well as nine potential *O*-linked glycosylation sites in the hinge region. All three IgA₂ variants lack these *O*-linked sugars, but they have two extra *N*-linked glycosylation sites (Asn¹⁶⁶ in the CH₁ and Asn³³⁷ in the CH₂). The IgA₂m(2) and IgA₂(n) allotypes have a fifth potential *N*-linked side in the CH₁ (Asn²¹¹) domain. The variations in the glycosylation structure of the different form of IgA play a significant role in determining antibodies conformation and assembly, receptors (TCR, ASGP-R) binding and t_{1/2}. Here we review current knowledge concerning the relationship of the structure of human IgA₁ to the IgA₂ isotype, the polymeric IgA and secretory IgA structures, and IgA function.